Gateway on Pesticide Hazards and Safe Pest Management
How To Find Ingredients in Pesticide Products
Beyond Pesticides offers resources below to evaluate the health and ecological effects of specific chemical exposure from ACTIVE INGREDIENTS in pesticide products, as well as regulatory information and supporting scientific documents. Because various pesticide products can contain more than one active ingredient, it is important to READ the LABEL to determine chemical components.
With 192 different active ingredients and counting, it is essential to establish the connection between the use of these chemicals and their respective hazards.
View the step-by-step guide on how to search for the active ingredient(s) in pesticide products below:
- Go to U.S. EPA's Pesticide Product and Label System and enter the product name. The generic product name may vary.
- After searching, click on the chemical ingredients tab or the link for the most recent label to find Active Ingredients.
Chemical List Label List
If one selects the chemical ingredients tab, skip to Step 4 . If not, proceed to step number 3 - To find the active ingredient(s) on the label, search for the page in the document containing the date of registration. Usually, the active ingredients section occurs within the first few pages of the label document.
- Return to the Beyond Pesticides Gateway and search for the active ingredient name in the yellow box to the right or from the list below.
Tebuconazole
General Information
- Product Names:
- Chemical Class: Azole fungicide
- Uses: Agriculture: grapes, garlic, cherries, peaches, more
- Alternatives: Organic agriculture
- Beyond Pesticides rating: Toxic
Health and Environmental Effects
- Cancer: Possible (43)
- Endocrine Disruption: Yes (36)
- Reproductive Effects: Not documented
- Neurotoxicity: Not documented
- Kidney/Liver Damage: Not documented
- Sensitizer/ Irritant: Not documented
- Birth/Developmental: Not documented
- Detected in Groundwater: Not documented
- Potential Leacher: Potential (43)
- Toxic to Birds: Not documented
- Toxic to Fish/Aquatic Organisms: Not documented
- Toxic to Bees: Not documented
Residential Uses as Found in the ManageSafe™ Database
Additional Information
- Supporting information:
- PAN Database: Tebuconazole (Pesticide Action Network North America)
- Studies:
- Adverse effects on sexual development in rat offspring after low dose exposure to a mixture of endocrine-disrupting pesticides.. Hass U, Boberg J, Christiansen S, Jacobsen PR, et al. 2012. Reprod Toxicol.34(2):261-74
- Birds feeding on tebuconazole treated seeds have reduced breeding output. Lopez-Antia, A., Ortiz-Santaliestra, M.E., Mougeot, F., Camarero, P.R. and Mateo, R., 2021. Environmental Pollution, 271, p.116292.
- Detrimental consequences of tebuconazole on redox homeostasis and fatty acid profile of honeybee brain. Mackei, M., Sebők, C., Vöröházi, J., Tráj, P., Mackei, F., Oláh, B., Fébel, H., Neogrády, Z. and Mátis, G., 2023. Insect Biochemistry and Molecular Biology, 159, p.103990.
- Major Pesticides Are More Toxic to Human Cells Than Their Declared Active Principles. Mesnage, R. et al. (2014) Major pesticides are more toxic to human cells than their declared active principles, BioMed Research International. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955666/.
- Snails as indicators of pesticide drift, deposit, transfer and effects in the vineyard. Druart, C. et al. (2011) Snails as indicators of pesticide drift, deposit, transfer and effects in the vineyard, Science of The Total Environment. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0048969711007224?via%3Dihub.
- Exposure to pesticides, persistent and non − persistent pollutants in French 3.5-year-old children: Findings from comprehensive hair analysis in the ELFE national birth cohort. Macheka, L. et al. (2024) Exposure to pesticides, persistent and non − persistent pollutants in French 3.5-year-old children: Findings from comprehensive hair analysis in the ELFE national birth cohort, Environment International. Available at: https://www.sciencedirect.com/science/article/pii/S0160412024004677.
- Uptake and distribution of fluopyram and tebuconazole residues in tomato and bell pepper plant tissues. Matadha, N.Y. et al. (2019) Uptake and distribution of fluopyram and tebuconazole residues in tomato and bell pepper plant tissues, Environmental Science and Pollution Research. Available at: https://link.springer.com/article/10.1007/s11356-018-04071-4.