[X] CLOSEMAIN MENU

  • Archives

  • Categories

    • Announcements (573)
    • Antibacterial (110)
    • Aquaculture (20)
    • Beneficials (17)
    • Biodiversity (12)
    • Biofuels (6)
    • Biological Control (8)
    • Biomonitoring (26)
    • Canada (3)
    • Cannabis (17)
    • Children/Schools (207)
    • Climate Change (28)
    • contamination (30)
    • Environmental Justice (102)
    • Environmental Protection Agency (EPA) (31)
    • Events (79)
    • Farmworkers (100)
    • Fracking (1)
    • Golf (11)
    • Health care (30)
    • Holidays (24)
    • Integrated and Organic Pest Management (49)
    • International (273)
    • Invasive Species (27)
    • Label Claims (43)
    • Lawns/Landscapes (173)
    • Litigation (263)
    • Nanotechnology (52)
    • National Politics (377)
    • Pesticide Drift (116)
    • Pesticide Regulation (629)
    • Pesticide Residues (128)
    • Pets (17)
    • Preemption (1)
    • Resistance (65)
    • Rodenticide (21)
    • Take Action (363)
    • Uncategorized (79)
    • Wildlife/Endangered Sp. (298)
    • Wood Preservatives (21)
  • Most Viewed Posts

Daily News Blog

Archive for the 'Coumaphos' Category


06
Feb

Bee Larvae Adversely Affected by Mix of Pesticides and Inert Ingredients

(Beyond Pesticides, February 6, 2014) We know that pesticides and bees don’t mix and that particular pesticides, such as neonictinoids, pose significant threats to bee populations worldwide, but a recent study conducted by researchers at Pennsylvania State University have identified that it is “the mix” of the many chemicals in the environment that pose a significant threat to honey bee survival. Looking at the four most common pesticides detected in pollen and wax –fluvalinate, coumaphos, chlorothalonil, and chloropyrifos, Wanyi Zhu and other researchers have assessed the toxic impacts of these pesticides on honey bee larvae at real world exposure levels; that is, levels that are found in existing hives outside of a laboratory. But these researchers go beyond the usual one-chemical analysis in their study,  Four Common Pesticides, Their Mixtures and a Formulation Solvent in the Hive Environment Have High Oral Toxicity to Honey Bee Larvae. Rather than just looking at the pesticides in their individual, out-of-the-bottle form, they also mixed them up and broke them apart. Why did they take this mixed-up approach? “Recently, one hundred and twenty-one different pesticides and metabolites were identified in the hive with an average of seven pesticides per pollen sample, including miticides, insecticides, […]

Share

29
Mar

Studies Find that Pesticides Cause Brain Damage in Bees

(Beyond Pesticides, March 29, 2013) Two studies released Wednesday support the findings of the European Food Safety Authority that neonicotinoid insecticides pose an unacceptable risk to bees. The pair of British studies indicate that neonicotinoids and miticides cause brain damage, compromising bee survival. The study, published in Nature Communications by researchers at the University of Dundee and Newcastle University, concludes that imidacloprid  and clothianidin, a commonly used insecticides on crops and plants, as well as the organophosphate miticide coumaphos, a treatment for Varroa bee mites, cause cognitive damage in bees. The research indicates that within 20 minutes of exposure to pesticides the neurons in the learning center of the brain stop firing, causing “epileptic type” hyperactivity. While the bees are still alive, the lobes of the brain fail to communicate with each other with obvious implications for their survival, Another study, published in the Journal for Experimental Biology by a team of Newcastle scientists, links imidacloprid and coumaphos to learning and memory impairment. The research indicates that brain damage from pesticides makes it more difficult for bees to forage and find food, and when they find the food they have trouble locating and returning to their hives. In sum, the […]

Share

30
Mar

Unprecedented Pesticide Contamination Found in Beehives

(Beyond Pesticides, March 30, 2010) Searching for clues to the mysterious disappearance of bees, known as “colony collapse disorder”(CCD), Penn State University researchers have identified widespread pesticide contamination of beehives. The study, “High Levels of Miticides and Agrochemicals in North American Apiaries: Implications for Honey Bee Health,” was published March 19, 2010 in the scientific journal Public Library of Science (PLOS). The study finds 121 different types of pesticides within 887 wax, pollen, bee and hive samples from 23 states. The top 10 most frequently detected pesticides are fluvalinate, coumaphos, chlorpyrifos, chlorothalonil, amitraz, pendamethalin, endosulfan, fenpropathrin, esfenvalerate and atrazine. Miticides are the most common contaminant in the wax and bees, and fungicides are the most common contaminant of pollen. For the full results of the study, including several tables of wax, pollen and bee sample data, download the study from the PLOS website. “The pollen is not in good shape,” Chris Mullin, PhD, lead author of the study, told Discovery News. The authors state that the 98 pesticides and metabolites detected in mixtures up to 214 parts per million (ppm) in bee pollen alone represents a remarkably high level for toxicants in the brood and adult food of this primary […]

Share

03
Nov

Bee Die-Offs Linked to Pesticide Mixtures, Window of Exposure

(Beyond Pesticides, November 3, 2009) Research by scientists at the University of Florida (UF) links Colony Collapse Disorder (CCD), the widespread disappearance of honey bees that has killed off more than a third of commercial honey bees in the U.S., to larval exposure to a cocktail of frequently used pesticides. Led by UF Institute of Food and Agricultural Sciences bee specialist Jamie Ellis, PhD, the researchers have finished a first round of testing on bee larvae exposed to the pesticides most commonly found in bee hives. The results were presented on October 22 at a meeting of the North American Pollinator Protection Campaign (NAPPC), which funded the study. The work gives insight into how the larvae react to these pesticides, which are usually only tested on adult bees, and sets the stage for the researchers to test the bees’ reaction to combinations of these pesticides. Just like mixing the wrong medications can have deadly and unpredictable results in humans, chemical mixtures pose a quandary for the bee industry. Bees are commonly exposed to multiple pesticides that are either applied to or nearby their hives. “Beeswax, honey and pollen can contain low mixtures of fungicides, insecticides, and herbicides. The larvae develop […]

Share

02
Sep

Research Shows Wide Array of Pesticide Exposures to Bees

(Beyond Pesticides, September 2, 2008) In new research findings by a Pennsylvania State University team, honey bees are exposed to a wide variety of pesticides outside of their hives. Add the outside assault to the pesticides already in the waxy structure of the hive, and bee researchers see a problem difficult to evaluate. However, an innovative approach may mitigate at least some beeswax contamination. The researchers presented their analysis of pollen, brood, adult bees and wax samples on August 18 at the 236th national American Chemical Society meeting in Philadelphia. Those results show unprecedented levels of fluvalinate and coumaphos – pesticides used in the hives to combat varroa mites – in all comb and foundation wax samples. They also find lower levels of 70 other pesticides and metabolites of those pesticides in pollen and bees. “Everyone figured that the acaricides (anti-varroa mite chemicals) would be present in the wax because the wax is reprocessed to form the structure of the hives,” says Maryann Frazier, senior extension associate. “It was a bit of a shock to see the levels and the widespread presence of these pesticides.” While the researchers expected the presence of the chemicals available to treat varroa mites in […]

Share

18
Sep

Pesticide Exposure Linked to Asthma in Farmers

(Beyond Pesticides, September 18, 2007) On September 16, 2007, researchers from the National Institute of Environmental Health Sciences presented findings to the European Respiratory Society Annual Congress in Stockholm showing that exposure to several commonly used pesticides increases the risk of asthma in farmers. Pesticide exposure is a “potential risk factor for asthma and respiratory symptoms among farmers,” lead author Dr. Jane A. Hoppin told Reuters Health. “Because grains and animals are more common exposures in agricultural settings, pesticides may be overlooked. Better education and training of farmers and pesticide handlers may help to reduce asthma risk.”The study consisted of 19,704 farmers, 441 of which had asthma. Farmers who have experienced high pesticide exposure were twice as likely to have asthma. Sixteen of the pesticides studied were associated with asthma. Coumaphos, EPTC, lindane, parathion, heptachlor, 2,4,5-TP, DDT, malathion, and phorate had the strongest effect. “This is the first study with sufficient power to evaluate individual pesticides and adult asthma among individuals who routinely apply pesticides,” Dr. Hoppin said. Asthma is a serious chronic disorder of the lungs characterized by recurrent attacks of bronchial constriction, which cause breathlessness, wheezing, and coughing. Asthma is a dangerous, and in some cases life-threatening disease. […]

Share