[X] CLOSEMAIN MENU

  • Archives

  • Categories

    • Announcements (586)
    • Antibiotic Resistance (18)
    • Antimicrobial (6)
    • Aquaculture (25)
    • Aquatic Organisms (17)
    • Bats (2)
    • Beneficials (35)
    • Biofuels (6)
    • Biological Control (17)
    • Biomonitoring (32)
    • Birds (11)
    • btomsfiolone (1)
    • Bug Bombs (1)
    • Canada (10)
    • Cannabis (27)
    • Centers for Disease Control and Prevention (CDC) (8)
    • Children (45)
    • Children/Schools (226)
    • Climate Change (49)
    • Clover (1)
    • compost (1)
    • contamination (97)
    • Disinfectants & Sanitizers (9)
    • Drinking Water (1)
    • Emergency Exemption (2)
    • Environmental Justice (129)
    • Environmental Protection Agency (EPA) (227)
    • Events (82)
    • Farm Bill (10)
    • Farmworkers (147)
    • Fertilizer (6)
    • fish (5)
    • Forestry (2)
    • Fracking (4)
    • Fungicides (9)
    • Goats (2)
    • Golf (11)
    • Greenhouse (1)
    • Groundwater (1)
    • Health care (32)
    • Herbicides (2)
    • Holidays (29)
    • Household Use (5)
    • Indigenous People (1)
    • Infectious Disease (2)
    • Integrated and Organic Pest Management (62)
    • International (337)
    • Invasive Species (29)
    • Label Claims (47)
    • Lawns/Landscapes (208)
    • Litigation (310)
    • Livestock (5)
    • Microbiata (8)
    • Microbiome (7)
    • Nanosilver (2)
    • Nanotechnology (54)
    • National Politics (386)
    • Occupational Health (2)
    • Pesticide Drift (144)
    • Pesticide Efficacy (2)
    • Pesticide Mixtures (2)
    • Pesticide Regulation (703)
    • Pesticide Residues (157)
    • Pets (23)
    • Plant Incorporated Protectants (1)
    • Preemption (25)
    • President-elect Transition (2)
    • Repellent (1)
    • Resistance (91)
    • Rodenticide (25)
    • Seeds (2)
    • synergistic effects (7)
    • Synthetic Pyrethroids (4)
    • Take Action (489)
    • Textile/Apparel/Fashion Industry (1)
    • Toxic Waste (3)
    • Wildlife/Endangered Sp. (365)
    • Wood Preservatives (24)
    • World Health Organization (3)
  • Most Viewed Posts

Daily News Blog

Archive for the 'synergistic effects' Category


07
Jan

Pesticides and Road Salt: A Toxic Mixture for Aquatic Communities

(Beyond Pesticides, January 7, 2021) Insecticides and road salts adversely interact to alter aquatic ecosystems, reducing organism abundance and size, according to a study in the journal Environmental Pollution. Pesticide use is ubiquitous, and contamination in rivers and streams is historically commonplace, containing at least one or more different chemicals. Although road salts can prevent hazardous ice formation during the colder months, the study raises critical issues regarding the adverse interaction between road salts and pervasive environmental pollutants that threaten human, animal, and environmental health and safety. Authors of the study note, “Our results highlight the importance of multiple-stressor research under natural conditions. As human activities continue to imperil freshwater systems, it is vital to move beyond single-stressor experiments that exclude potentially interactive effects of chemical contaminants.” To assess the impact of road salts and insecticides on aquatic communities, researchers created a mesocosm (controlled outdoor experimental area) to examines the natural environment under controlled conditions. These communities include zooplankton, phytoplankton, periphyton, and leopard frog (Rana pipiens) tadpoles. Researchers performed a toxicity evaluation of six insecticides from three chemical classes (neonicotinoids: thiamethoxam, imidacloprid; organophosphates: chlorpyrifos, malathion; pyrethroids: cypermethrin, permethrin). Additionally, researchers note the potentially interactive effects of these insecticides with three concentrations of […]

Share

30
Oct

New European Union Looks at Chemical Mixtures

(Beyond Pesticides, October 30, 2020) The European Union (EU) adopted, in mid-October, a new strategy on chemicals — including pesticides — that seeks to deal with their combined (synergistic) and cumulative impacts on human and environmental health. A highlight of the new strategy is the acceleration of work, already begun across the EU, to address the “chemical cocktail” impacts of pesticides and other chemicals. Human exposures to such “cocktails” can happen through use of multiple different agricultural pesticides that can persist as residues on food, and via industrial processes and consumer products. Beyond Pesticides has insisted for years that, here in the states, the Environmental Protection Agency (EPA) has been way behind the eight ball in dealing with the potential synergistic and cumulative impacts of the pesticides its registers for use. Advocates have argued that the agency must be far more rigorous in evaluating impacts of exposures to multiple pesticides, as well as cumulative impacts. The toxicity problem the EU seeks to address is that interacting chemicals can have synergistic effects, even at very low levels — effects greater than and/or different from the expected impacts of each chemical per se. Pesticides can also have cumulative “toxic loading” effects in both […]

Share

11
Jun

Dogs (Canis familiaris) – Research Tracks Dogs’ Exposure to Contaminants in the Home, Serves as Sentinel Species for Chemical-Induced Human Diseases

(Beyond Pesticides, June 11, 2020) Researchers at North Carolina State University (NC State) and Duke University found that dogs can potentially operate as a sentinel, or indicator, species for environmental contaminate exposure – and subsequent diseases – in humans using silicone monitoring devices (i.e., wristbands, collars, etc.), according to research published in Environmental Science & Technology. Although scientists commonly use silicone devices to gauge organic contaminant exposure levels in epidemiological studies, the identification of chronic human diseases from pollutants remains challenging. Anthropoid (human) diseases can take many years to develop, even after initial contaminant exposure. However, dogs can develop comparable anthropomorphic diseases from susceptibility to the same environmental contaminants, but at a much quicker pace. This research highlights the significance of researching disease identification methods, mutual amid multiple species, to mitigate challenges surrounding long disease latency periods. Matthew Breen, Ph.D., professor of comparative oncology genetics at NC State, asserts, “If we develop ways to correlate dog disease with their exposures over time, it may allow human-health professionals to mitigate these exposures for both species. This study reinforces the concept of One Health, demonstrating that in addition to being our closest animal companions, our dogs are truly a sentinel species for health.” As […]

Share

21
May

Study Finds an Association between Dicamba Use and Increased Risk of Developing Various Cancers

(Beyond Pesticides, May 21, 2020) Use of the herbicide dicamba increases humans’ risk of various acute and chronic cancers, according to research published in the International Journal of Epidemiology by the National Institutes of Health (NIH). Many pesticides are “known or probable” carcinogens (cancer-causing agents), and their widespread use only amplifies chemical hazards, adversely affecting human health. However, past research lacks comprehensive information regarding human health effects associated with long-term pesticide use. This study highlights the significant role that long-term research plays in identifying potential health concerns surrounding registered pesticides, especially as the Environmental Protection Agency (EPA) plans to reaffirm its decision to allow dicamba use on genetically engineered (GE) crops. Nathan Donley, Ph.D., a scientist with the environmental health program at the Center for Biological Diversity, comments: “This sweeping study exposes the terrible human cost of the EPA’s reckless decision to expand the use of dicamba. […]For the EPA to approve widespread use of this poison across much of the country without assuring its safety to people and the environment is an absolute indictment of the agency’s persistent practice of rubber-stamping dangerous pesticides.” Dicamba—a benzoic acid chemical that controls broadleaf weeds—is one of the most widely applied herbicides in corn production. As a result of weed resistant to […]

Share

09
Apr

Honey Bee Queens’ Exposure to Pesticides Weaken Reproductive Success and Colony Development

(Beyond Pesticides, April 9, 2020) Honey bees (Apis mellifera) remain in severe decline, with U.S. beekeepers losing 30% of their managed colonies each year. A Texas A&M University (Dr. Juliana Rangel’s laboratory)  study provides evidence that chemical-intensive farming practices contaminate honey bee hives with pesticides that cause developmental delays. Researchers found that toxic pesticides adversely affect honey bee queen physiology and worker bee performance. Moreover, pesticides exacerbate the health risks associated with the declining honey bee population. When maturing honey bees’ exposure to pesticides is limited, there is an improvement in honey bee queen health and colony behavior. In agricultural settings, honey bees are exposed to an amalgamation of pesticides. AAFC and Texas A&M researchers determined which pesticides (miticides, insecticides, and fungicides) are commonly used in combination and then used those pesticide combinations to expose honey bees to field-realistic doses in the lab: tau-fluvalinate and coumaphos, amitraz, or chlorothalonil and chlorpyrifos. Researchers cultivated maturing honey bee queens in plastic cups coated with either pesticide-free or pesticide-contaminated beeswax. Honey bee queens were transferred into hives upon maturation and bred naturally. Researchers measured their egg-laying frequency along with worker bee entourage size. Post-reproduction, scientists performed a bioassay (a measurement of substance potency or concentration effects on living cells) on […]

Share

15
Oct

Take Action: EPA Must Evaluate the Effects of Multiple Pesticide Ingredient Use and Exposure

(Beyond Pesticides, October 15, 2019) EPA is requesting comment on its proposal to require data that will help it determine synergistic effects of some pesticides. EPA has received on a pressure on a number of fronts, including a report by the Center for Biological Diversity, a report by its own Inspector General, a letter from 35 Congressional Representatives, and research pointing to the unavoidability of synergistic effects—the chemical combinations that cause greater effects when mixed together than the sum of the individual chemical effects. Despite all of the evidence that synergism is the rule rather than the exception, EPA’s consideration focuses on a narrow range of cases in which pesticide product patents make claims of synergy. Tell EPA to always investigate synergy and to determine need for pesticides. One such product is Dow’s Enlist Duo, which combines glyphosate and 2,4-D in an attempt to overcome weed resistance. The focus on products and tank mixes where synergism is a selling point brings to light the fact that as a rule, EPA does not request efficacy data in registering pesticides not intended to protect public health. Thus, although required by law to weigh pesticide risks and benefits, EPA rarely has data to make […]

Share

29
Jul

EPA’s Office of Inspector General Must Investigate EPA’s Failure to Fully Assess Pesticide Hazards

(Beyond Pesticides, July 29, 2019) A research study, published in March in Scientific Reports, uncovers a pesticide effect on a sugar-metabolizing enzyme common to all cells that has broad health ramifications ignored by the U.S. Environmental Protection Agency’s (EPA) safety testing protocol. This finding raises a larger question regarding the need for EPA to test for the synergistic effects of pesticides, whereby pesticides and chemicals in combination have an even greater effect than they do by themselves. The research, by T. Tristan Brandhorst, PhD, Iain Kean, PhD, and others in the lab of Bruce Klein, PhD, of the University of Wisconsin–Madison and UW School ofMedicine and Public Health, specifically sheds light on the mode of action of the fungicide fludioxonil. Fludioxonil, a phenylpyrrole fungicide, was developed to treat seeds during storage, and has come to be used commonly on grains, vegetables, fruits, and ornamental plants during cultivation, and produce after harvest to extend “shelf life.” As reported by the American Association for the Advancement of Science publication, EurekAlert, “The ability of [the fungicide] fludioxonil to act on a sugar-metabolizing enzyme common to all cells, and to produce the damaging compound methylglyoxal, may mean that the pesticide has more potential to harm non-fungal cells than previously […]

Share