[X] CLOSEMAIN MENU

  • Archives

  • Categories

    • air pollution (8)
    • Announcements (606)
    • Antibiotic Resistance (45)
    • Antimicrobial (22)
    • Aquaculture (31)
    • Aquatic Organisms (39)
    • Bats (10)
    • Beneficials (60)
    • Biofuels (6)
    • Biological Control (34)
    • Biomonitoring (40)
    • Birds (26)
    • btomsfiolone (1)
    • Bug Bombs (2)
    • Cannabis (30)
    • Centers for Disease Control and Prevention (CDC) (13)
    • Chemical Mixtures (10)
    • Children (123)
    • Children/Schools (241)
    • cicadas (1)
    • Climate (35)
    • Climate Change (97)
    • Clover (1)
    • compost (7)
    • Congress (22)
    • contamination (163)
    • deethylatrazine (1)
    • diamides (1)
    • Disinfectants & Sanitizers (19)
    • Drift (19)
    • Drinking Water (20)
    • Ecosystem Services (21)
    • Emergency Exemption (3)
    • Environmental Justice (171)
    • Environmental Protection Agency (EPA) (568)
    • Events (89)
    • Farm Bill (25)
    • Farmworkers (207)
    • Forestry (6)
    • Fracking (4)
    • Fungal Resistance (8)
    • Goats (2)
    • Golf (15)
    • Greenhouse (1)
    • Groundwater (17)
    • Health care (32)
    • Herbicides (52)
    • Holidays (39)
    • Household Use (9)
    • Indigenous People (6)
    • Indoor Air Quality (6)
    • Infectious Disease (4)
    • Integrated and Organic Pest Management (75)
    • Invasive Species (35)
    • Label Claims (51)
    • Lawns/Landscapes (255)
    • Litigation (349)
    • Livestock (10)
    • men’s health (5)
    • metabolic syndrome (3)
    • Metabolites (8)
    • Microbiata (25)
    • Microbiome (31)
    • molluscicide (1)
    • Nanosilver (2)
    • Nanotechnology (54)
    • National Politics (388)
    • Native Americans (4)
    • Occupational Health (17)
    • Oceans (11)
    • Office of Inspector General (5)
    • perennial crops (1)
    • Pesticide Drift (165)
    • Pesticide Efficacy (12)
    • Pesticide Mixtures (18)
    • Pesticide Residues (191)
    • Pets (36)
    • Plant Incorporated Protectants (2)
    • Plastic (11)
    • Poisoning (21)
    • Preemption (46)
    • President-elect Transition (2)
    • Reflection (1)
    • Repellent (4)
    • Resistance (123)
    • Rights-of-Way (1)
    • Rodenticide (34)
    • Seasonal (3)
    • Seeds (8)
    • soil health (28)
    • Superfund (5)
    • synergistic effects (28)
    • Synthetic Pyrethroids (18)
    • Synthetic Turf (3)
    • Take Action (612)
    • Textile/Apparel/Fashion Industry (1)
    • Toxic Waste (12)
    • U.S. Supreme Court (4)
    • Volatile Organic Compounds (1)
    • Women’s Health (29)
    • Wood Preservatives (36)
    • World Health Organization (12)
    • Year in Review (2)
  • Most Viewed Posts

Daily News Blog

Archive for the 'Beneficials' Category


06
Nov

Study Reinforces Importance of Biodiversity in Agriculture and Ecosystem Health

(Beyond Pesticides, November 6, 2024) An analysis in the International Journal of Research Publication and Reviews emphasizes the role of biodiversity in agriculture, adding to a wide body of science on its importance. The authors, from Western Illinois University in the United States and Rome Business School in Italy, find that biodiversity supports critical ecosystems and organisms needed for sustainable food production. Through literature reviews and case studies, the interconnectedness of agriculture with plant and animal diversity, beneficial insects, soil health, and climate change is highlighted, as well as the need to manage land organically to support biodiversity. Plant and Animal Diversity As the researchers note, “A diverse agricultural system can better absorb shocks and maintain productivity, ensuring food security in the face of uncertainty.” A wide range of species present within ecosystems protects from changing environmental conditions and improves resilience. When farmers use monocultures for their crops, this leads to reduced ecosystem services from beneficial insects and increased vulnerability to pests and diseases. “By contrast, diverse cropping systems can enhance resilience, providing a buffer against environmental changes and fostering sustainable food production,” the authors say. Research shows that higher plant diversity disrupts pest life cycles and promotes beneficial insects, […]

Share

18
Sep

Over 300 Pesticides Identified in Contaminated Bee Pollen Around the World

(Beyond Pesticides, September 18, 2024) A literature review in Trends in Analytical Chemistry analyzes scientific articles from the last ten years from around the globe that identify more than 300 pesticides in bee pollen. Bee pollen, often used as an edible dietary supplement, is not regulated for pesticide residues, which sparks concern for human exposure due to contamination with pesticides, heavy metals, metalloids, and mycotoxins. “Bee pollen is a food supplement that is receiving increasing attention for its nutraceutical and therapeutic properties. However, several uncertainties on the safety of this beekeeping product still exist. The present work addressed this issue through the critical evaluation of 61 studies, published over the 2014–2024 period,” the Spanish authors state. Bee pollen is produced by honey bees. After they forage on flowers and gather pollen on their hind legs (in pollen baskets or corbiculae) to transport back to the hive, it is moistened with nectar and salivary secretions to create bee pollen in the form of pellets. While the composition of bee pollen can vary between geographical locations with different flowers, the studies reviewed all utilize mass spectrometry to pinpoint pesticides, as well as mycotoxins (created by naturally occurring mold spores), that threaten human […]

Share

16
Sep

Call for Action after Study Links Biodiversity Decline to Elevated Pesticide Use and Rise in Infant Mortality 

(Beyond Pesticides, September 16, 2024) After the release of a hard-hitting study last week published in Science that pinpoints the cycle of increasing pesticide use with ecosystem and bat decline, resulting in higher infant mortality, Beyond Pesticides is calling for state and local action to transition public land to organic practices. Without a healthy ecosystem, the study documents increased pesticide use with dramatic adverse health effects. To take corrective action, Beyond Pesticides’ action asks governors and mayors to do the following: Eliminate the use of pesticides that imperil bats by adopting biodiversity conservation goals including— (1) ecological mosquito management with measures that recognize the benefit of preventive strategies, establish source reduction programs to manage breeding sites on public lands, educate on the management of private lands, employ programs for larval management with biological controls, and eliminate the use of toxic pesticides; (2) prohibition of systemic insecticides and treated seeds, including neonicotinoids; and (3) land management on public lands—including hospitals, higher education institutions, schools, and parks—using regenerative organic principles and organic certified practices and products, to transition to a viable organic system that prioritizes long-term health of the public, ecology, and economy. The new research connects declines in bat populations with increased […]

Share

11
Sep

Continued Decline in Insect Species Biodiversity with Agricultural Pesticide Use Documented

(Beyond Pesticides, September 11, 2024) A literature review in Environments, written by researchers from South Korea and Ghana, highlights the threat to nontarget species and the biodiversity of insects that occur as a result of agricultural pesticide use. “Insects have experienced a greater species abundance decline than birds, plants, and other organisms, which could pose a significant challenge to global ecosystem management. Although other factors such as urbanisation, deforestation, monoculture, and industrialisation may have contributed to the decline in insect species, the extensive application of agro-chemicals appears to cause the most serious threat,” the authors state. The so-called “insect apocalypse” has been reported with one-quarter of the global insect population lost since 1990.  The authors, seeking to summarize the decline in insect species richness and abundance, link reliance on petrochemical pesticides and synthetic fertilizers to cascading negative impacts. Insects provide many important services, such as maintaining healthy soil, recycling nutrients, pollinating flowers and crops, and controlling pests. These nontarget and beneficial species are at risk through pesticide exposure, both directly and indirectly, which then affects these essential functions.   “Extensive and indiscriminate pesticide application on a commercial scale affects insect species abundance and non-target organisms by interfering with their growth, […]

Share

10
Sep

Healthy Ecosystems Essential to Cost-Effective Pest Management and Protection of Health

(Beyond Pesticides, September 10, 2024) Results from a natural experiment, published in Science, shows ecosystem disruption of bat populations with cascading impacts on human health. Eyal Frank, PhD, an assistant professor of the Harris School of Public Policy at the University of Chicago, links increased insecticide use in croplands in the absence of bat species to a rise in infant mortality. As Dr. Frank says in an article in Science Daily, “[B]ats do add value to society in their role as natural pesticides, and this study shows that their decline can be harmful to humans.”  Many farmers rely on bats as alternatives to pesticides to protect their crops from insects, but White-Nose Syndrome (WNS) has greatly impacted bat populations since 2006. With the collapse of many bat populations in counties in North America, these farmers turn to toxic chemicals to replace the ecosystem services bats usually provide. These chemicals, however, lead to ripples through the ecosystem and endanger human health.  WNS is an invasive fungus (Pseudogymnoascus destructans) found in caves that affects bats during hibernation. As highlighted in an article in the New York Times, three species of bats in North America have been decimated by this syndrome, and bats […]

Share

09
Sep

Increased Pesticide Use and Infant Deaths Tied to Decline of Bats; Importance of Organic Cited

(Beyond Pesticides, September 9, 2024)  Comments are due by 11:59 PM EDT on September 30, 2024. With the opening of the public comment period on organic standards that determine the integrity, strength, and growth of the organic agricultural sector, a study was released last week that shows degradation of the ecosystem linked to increased infant mortality associated with higher pesticide use by chemical-intensive farmers compensating for losses in bat populations. It is well known that bats, among other wildlife including birds and bees, provide important ecosystem services to farmers by helping to manage pest populations and increase plant resilience and productivity. While degradation of ecosystems is attributable to many factors, pesticide use accounts for an important element in harm to bats and biodiversity. The study, “The economic impacts of ecosystem disruptions: Costs from substituting biological pest control,” published in Science, concludes with a finding  that “insect-eating bat population levels induce farmers to substitute with insecticides, consequently resulting in a negative health shock to infant mortality.” Daily News will cover this study in depth in an upcoming edition. According to research published in the Journal of the Association of Environmental and Resource Economists (2022), bat population declines cost American farmers as much as […]

Share

23
Aug

Study of Pesticide Risk in Wild Bee Species Highlights EPA Risk Assessment Inadequacies

Image: Art Page submission from Sara Grantham, “Sunflower Pollinators”  (Beyond Pesticides, August 23, 2024) A study in Science of The Total Environment calculates and compares pesticide risk in 594 wild bee species associated with crops in North America. Current pesticide risk assessments that analyze effects on bees primarily focus on a limited subset of species and do not provide comprehensive protection of all wild bees. “Species commonly proposed as models for pesticide risk assessments may not accurately represent risk for those bee species facing the highest potential risk in agricultural contexts,” the authors postulate. The researchers continue, “This study presents a novel approach to characterize and compare the relative potential pesticide risk among wild bee species of their association with crops in North America using suites of intrinsic bee traits to quantify species’ vulnerability and extrinsic factors based on the toxic load of crops for bees and the strength of each species’ association with those crops.” In considering multiple factors that vary by species and determining potential harm to each from pesticide exposure, this study highlights the inadequacies of the current risk assessment process used by the U.S. Environmental Protection Agency (EPA).    The system for risk assessment for pesticides that […]

Share

09
Aug

Study Shows Value of Soil Microbiome, Nurtured in Organic Farming, Harmed by Chemical-Intensive Ag

(Beyond Pesticides, August 9, 2024)​​ A study in the journal Biology and Fertility of Soils has confirmed once again that organic agriculture contributes significantly to soil health, improving ecological functions that are harmed by conventional, chemical-intensive farming practices. Organic soil amendments (fertilizers) that feed soil organisms increase beneficial protistan predators and support sustainable predator-prey relationships within the soil microbiome. [‘Protist’ is a catch-all term that describes ancient lineages of eukaryotes—organisms with a nucleus—that are neither a true plant, animal, or fungus.] The study shows that organic farming creates a healthy ecosystem able to support a balance of life forms in the soil. Moreover, the study finds that the use of chemical fertilizers for agricultural management disrupt the stable biological relationship between protistan predators and their bacterial prey in soils, adding to the argument for transitioning away from conventional systems that lean on toxic inputs.   Healthy soil contains millions of living species that form the microbiome. Most of the biodiversity in soil consists of bacteria and fungi, and their number and type are regulated partially by predatory protists and nematodes that feed on bacteria. Akin to the impact of predators keeping a herd of prey healthy by hunting the sick, […]

Share

10
Jul

Neonicotinoid Insecticides Contribute to Honey Bee Vulnerability to Parasitic Varroa Mites

(Beyond Pesticides, July 10, 2024) An article last month in Entomology Today, a publication of the Entomological Society of America, highlights the important findings of a study published earlier this year in the Journal of Insect Science. While there has been debate on whether neonicotinoid (neonic) insecticides or Varroa mites (Varroa destructor) are more detrimental to the survival of bees, evidence suggests that neonicotinoids are not only harmful individually but can increase vulnerability to parasitism from mites in western honey bees (Apis mellifera). The Entomology Today article reads: “Some researchers and organizations have pointed to neonics as directly harming bees. Others have pointed to other issues, like Varroa mite infestation, as more hazardous to honey bee populations.” There is scientific evidence supporting each claim, as both cause stress to bee species that can lead to population decline. The study in the Journal of Science, however, is “the first experimental field demonstration of how neonicotinoid exposure can increase V. destructor populations in honey bees and also demonstrates that colony genetic diversity cannot mitigate the effects of neonicotinoid pesticides.”  As the article states, “The researchers were not looking for impacts on Varroa mites at first. Instead, they were looking to understand how […]

Share

30
Oct

Despite a Beetle’s History of Resistance to Insecticides, EPA Is Pushing Genetically Engineered Pesticide

(Beyond Pesticides, October 30, 2023) TAKE ACTION. It is said that the definition of insanity is doing the same thing over and over again and expecting a different result. And so it goes with the U.S. Environmental Protection Agency’s (EPA) proposal to register a new genetically engineered pesticide for the Colorado Potato Beetle (CPB); this time with a pesticide that has not been fully evaluated for its adverse effects to people and the environment. [Submit a public comment before comment period ends today, October 30, 2023.] Chemical-intensive agriculture has failed to control CPB since resistance to DDT was identified in 1952 and has continued with every family of pesticides since then. CPB has been dubbed the billion-dollar-bug because of the investment in failed attempts of chemical manufacturers to control the insect, the profits generated by chemical companies despite this failure, and the resulting losses for chemical-intensive farmers—not to mention government expenditures for the registration of chemicals that have short efficacy, pollution costs associated with chemical production and use, and lost ecosystem services. But, EPA is at it again, registering a new novel pesticide active ingredient, Ledprona, which raises the stakes on potential harm. The only winners in this ongoing failure […]

Share

28
Jul

Degradation of Color Discrimination Associated with Glyphosate Exposure Impairs Bees’ Foraging Ability

(Beyond Pesticides, July 28, 2023) A study published in Science of the Total Environment finds glyphosate can adversely impact sensory and cognitive processes in bumblebees (Bombus terrestris). Glyphosate exposure impairs bees’ learning of aversive stimuli like electric shocks paired with specific color discrimination. Additionally, the pesticide reduces attraction to UV (ultraviolet) light, specifically the color blue, and temporarily impacts locomotion and phototaxis (movement in response to light). These impairments to sensory and cognitive processes render foraging difficult for these glyphosate-exposed pollinators and vulnerable to unavoidable predators. The study highlights that symptoms of widespread chemical exposure may reduce foraging efficiency and adversely affect ecosystems, especially those dependent on insect pollinators.  Pollinator decline directly affects the environment, society, and the economy. Without pollinators, many plant species, both agricultural and nonagricultural, will decline or cease to exist as U.S. pollinator declines, particularly among native wild bees, limit crop yields. In turn, the economy will take a hit, since much of the economy (65%) depends upon the strength of the agricultural sector. As the science shows, pesticides are one of the most significant stressors for pollinators. In a world where habitat loss and fragmentation show no sign of abating, scientists have concluded that the globe cannot afford to continue […]

Share

14
Jul

Soil Amended with Insect Exoskeleton Is Effective Alternative to Harmful Chemical Fertilizers

(Beyond Pesticides, June 14, 2023) The exoskeleton of the black soldier fly (BSF; Hermetica illucens) has the potential to be an effective organic fertilizer. A study in the journal Agriculture, Ecosystems & Environment highlights the positive impacts on plant size, flower count, seed production, appeal to pollinators, and resilience to herbivory that the fly’s molted exoskeleton (or exuviae) can have when used as a soil supplement. The use of insect exuviae as an organic alternative to harmful synthetic fertilizers is an important step toward an environment free from chemical contaminants, and BSF are uniquely equipped to contribute to a regenerative organic agricultural system. The study set out to determine the impacts of BSF exuviae on plant growth, resilience to herbivory, and pollination. The scientists divided black mustard plants into four different treatment groups: 1) grown in soil amended with BSF powdered exuviae; 2) control group planted in chemically-treated (conventional) soil; 3) grown in amended soil and subjected to increased herbivory from caterpillars (Pieris brassicae) and aphids (Brevicoryne brassicae); and 4) planted in conventional soil and subjected to increased pest exposure. Scientists measured plant growth, flowering status, seed production, herbivore abundance, and pollinator activity. After three weeks, the supplemented soil grew […]

Share

12
Jul

Cultivating with Natural Predators Gets Farmers Off the Pesticide Treadmill, According to Study

(Beyond Pesticides, July 12, 2023) A study by University of Delaware entomologist Thabu Mugala and colleagues finds that modifications to their farming methods can reduce slug damage when those changes also encourage natural slug predators, allowing farmers to avoid the endless cycle of pesticide dependency, pest resistance, genetically engineered crops, and synthetic fertilizers. With insects as the target for tens of millions of pounds of agricultural use, growers of the highest-production crops in the U.S., corn and soybeans, continue to find slugs to be a serious problem. Corn and soybean growers who have adopted no-till or conservation tillage and cover crops often think these practices worsen the problem by increasing moisture and decaying plant material in fields, which slugs love. But the cause-and-effect picture is more nuanced and requires strategies that nurture ecological balance. Slugs are the most damaging non-arthropod pest in no-till corn production in the U.S., and truly effective chemical deterrents do not exist at agricultural scale, as Beyond Pesticides noted here, although biological methods may be on the horizon, such as a parasitic nematode already used in Europe that shows promise. The most voracious natural slug hunters are ground beetles, but harvestmen (daddy longlegs), and wolf spiders […]

Share

22
Jun

Pesticide Threat to Pollinators Decreases Agricultural and Economic Productivity, and Food Security

(Beyond Pesticides, June 22, 2023) Since the early twentieth century, ‘migratory’ beekeepers have provided a critical service to U.S. agriculture by moving their hives seasonally to pollinate a variety of crops. Annually, commercial beekeeping adds between $15 and $20 billion in economic value to agriculture, which is a major industry in the United States, with 21.1 million full- and part-time jobs related to the agricultural and food sectors—10.5 percent of total U.S. employment. Before insects and pollinators like bees evolved to pollinate, pollination occurred through the wind, scattering the pollen from the plants and landing on other flowers that could reproduce. However, commercial pollination services contribute to increased yields. Without commercial pollination, food prices would rise, the farm sector would suffer globally, and the security and variety of the food supply would diminish. With the wild insect pollinator populations already in serious decline, commercial, migratory beekeeping is more than ever a vital piece of the agricultural economy. With pollinator decline, as an integral part of worldwide biodiversity collapse and the “insect apocalypse,” commercial beekeepers face collapse as well. The United Nations states that 80 percent of the 115 top global food crops depend on insect pollination, with one-third of all U.S. crops depending on pollinators, according to the U.S. […]

Share

21
Jun

A Reminder for Pollinator Week: Protect Pollinator and Habitat and Well-Being Against Dramatic Declines

(Beyond Pesticides, June 21, 2023) Pollinators––bees, butterflies, birds, bats, and other organisms––make a critical contribution to plant health, crop productivity, and the preservation of natural resources. However, pesticides consistently act as a key contributor to dramatic pollinator declines. Much research attributes the decline of insect pollinators over the last several decades to the interaction of multiple environmental stressors, from climate change to pesticide use, disease, habitat destruction, and other factors. Roughly a quarter of the global insect population has disappeared since 1990, according to research published in the journal Science. Monarchs are near extinction, and beekeepers continue to experience declines that are putting them out of business. We continue to lose mayflies, the foundation of many food chains, and fireflies, the foundation of many childhood summer memories. The declines in many bird species likely have close links to insect declines. Recent research finds that three billion birds, or 29% of bird abundance, have been lost since the 1970s. In a world where habitat loss and fragmentation show no sign of abating, scientists have concluded that the globe cannot afford to continue to subject its critically important wild insects to these combined threats.  Clean air, water, and healthy soils are integral to ecosystem function, interacting between Earth’s four main spheres (i.e., hydrosphere, […]

Share

20
Oct

Glyphosate Based Herbicides and Bee Health: The American Bumble Bee

(Beyond Pesticide, October 20,2022) Exposure to environmentally relevant levels of glyphosate-based herbicides (GBHs) weakens bumblebees’ (Bombus Terrestris) ability to distinguish between colors or fine-color discrimination. According to research published in Science of The Total Environment, a lack of fine-color discrimination skills can threaten bumble bee survivability through impact on colony fitness and individual foraging success. Much research attributes the decline of insect pollinators (e.g., commercial and wild bees and monarch butterflies) over the last several decades to the interaction of multiple environmental stressors, from climate change to pesticide use, disease, habitat destruction, and other factors. In the U.S., an increasing number of pollinators, including the American bumblebee and monarch butterfly, are being added or in consideration for listing under the Endangered Species Act, with specific chemical classes like systemic neonicotinoid insecticides putting 89% or more of U.S. endangered species at risk. Pollinator decline directly affects the environment, society, and the economy. Without pollinators, many plant species, both agricultural and nonagricultural, will decline or cease to exist as U.S. pollinator declines, particularly among native wild bees, limits crop yields. In turn, the economy will take a hit, as much of the economy (65%) depends upon the strength of the agricultural sector. As science shows, pesticides are one of the most significant stressors […]

Share

23
Jun

Disappearance of California Bumble Bees Calls for Urgent Protection of Pollinators Nationwide

(Beyond Pesticides, June 23, 2022) In the first California statewide bumble bee census in 40 years, a University of California—Riverside (UCR) study, published in Ecology and Evolution, reveals that once common bumble bee species in California are disappearing from the ecosystem. Wild pollinators like bumble bees provide pollination to billions of dollars worth of crops each year as these insects can flourish in cooler habitats and lower light levels than commercial honey bees. However, pollinators (such as bees, monarch butterflies, and bats) are a bellwether for environmental stress as individuals and as colonies. Both wild and commercial bees and other pollinators encounter multiple stressors, including pesticides, parasites, and poor nutrition, that act together to increase the risk of bee mortality. Therefore, studies like these highlight the need to establish monitoring and conservation frameworks incorporating varying habitats and species to assess fluctuations in biodiversity. The study notes, “Specifically, our study shows that greater monitoring of the diverse bumble bees of California is needed in order to better understand the drivers of biodiversity and decline in this genus, and to more effectively manage bumble bee conservation in the state.”  Researchers compared data on bumble bee populations in California in 1980 and 2020. After collecting bumble […]

Share

06
Jan

Neonicotinoids Pass Through Aphids, Contaminating Honeydew and Killing off Pest Predators

(Beyond Pesticides, January 6, 2022) Seeds treated with neonicotinoid insecticides contaminate honeydew, often the biggest source of food for pest predators, according to recent research published in the journal Environmental Pollution. Concerned advocates for pollinators and pesticide reform are likely familiar with fact that neonicotinoids are systemic, and once applied to a seed or sprayed on a plant are taken up by the plant and distributed throughout the pollen, nectar and dew drops that a plant produces. But there is another systemic effect that is not included in that picture, and in monoculture crops, it could be the biggest source of carbohydrates for beneficial pest predators – honeydew. Honeydew is produced from phloem-feeding (sap sucking) pests like aphids, whiteflies, leafhoppers, and other hemipteran insects. The waste that these insects produce is liquid, and full of sugars. “This rich carbohydrate source is a common food for many beneficial insects, including pollinators, such as bees and flies, and some natural enemies of pests, such as ants, wasps and beetles,” said John Tooker, PhD, coauthor of a recent literature review published in Biological Reviews. “Honeydew often is more abundant than nectar in agroecosystems.” In 2019, a study published in the Proceedings of the […]

Share

02
Nov

Cover Crops Attract Pest Predators which Reduce Pesticide Use

(Beyond Pesticides, November 2, 2021) Cover crops create habitat that draw in pest predators and help mitigate crop injury, finds research published in the journals Agroecosystems and Biological Control from scientists at the University of Georgia. Expanded predator diversity can reduce pest pressure that drives conventional chemical farmers to apply toxic pesticides, and the authors of the study find the practice to be economically viable within these cropping systems. “There’s a motion of change going on where growers are thinking more about using natural systems instead of just using pesticides,” said co-author Jason Schmidt, PhD in a news release. “Producers must use all tools available to make a profit, so if they can promote beneficial insects in the system to aid in pest control,  fewer inputs are needed and that should lead to reduced costs of production. ” To determine how beneficial cover crops were to cotton production, researchers began with experimental crops established over two years in 2016 and 2017 in Georgia. Twelve cover crops plots were established with crimson clover and rye, while a plot not planted with cover crops was used as a control. Researchers planted the cover crop in early November after the previous cotton crop […]

Share

08
Apr

Invertebrates and Plants Face Increasing Threat from Pesticide Use, Despite Declining Chemical Use Patterns

(Beyond Pesticides, April 8, 2021) Pesticide use threatens aquatic and terrestrial invertebrates and plants more than ever, despite declining chemical use and implementation of genetically engineered (GE) crops in the U.S., according to a University Koblenz-Landau, Germany study. Since the publication of Rachel Carson’s Silent Spring (1962), many environmental agencies have banned the use of pesticides like organochlorines, organophosphates, and carbamates for their devastating toxic—sometimes lethal—effects, particularly on vertebrates, including humans. However, this ban created a pathway for a new generation of pesticides (e.g., neonicotinoids, pyrethroids) to take hold. Although these pesticides are more target-specific, requiring lower chemical concentrations for effectiveness, they have over double the toxic effects on invertebrates, like pollinators.  Invertebrates and plants are vital for ecosystem function, offering various services, from decomposition to supporting the food web. Furthermore, invertebrates and plants can act as indicator species (bioindicators) that scientists can observe for the presence and impact of environmental changes and stressors. Therefore, reductions in invertebrate and plant life have implications for ecosystem health that can put human well-being at risk. Study lead author Ralf Schulz, PH.D., notes, “[This study] challenge[s] the claims of decreasing environmental impact of chemical pesticides in both conventional and GM [genetically modified or genetically engineered (GE)] crops and […]

Share

03
Mar

Massachusetts Regulators Restrict Consumer Use of Bee-Toxic Neonicotinoid Pesticides

(Beyond Pesticides, March 3, 2021) Earlier this week, pesticide regulators in the commonwealth of Massachusetts voted to restrict outdoor consumer uses of neonicotinoid insecticides. The move is the result of sustained advocacy from broad coalition of individuals and organizations focused on protecting pollinators and ecosystem health. While advocates are pleased that the Pesticide Board Subcommittee made Massachusetts the first state in the country to restrict neonicotinoids through a regulatory process, they note this is only the first step in eliminating these hazardous insecticides. “This marks an incremental victory which took us 6 years to land, and it only happened because of immense, ongoing grassroots action and legislative allies who are willing to hold state regulators accountable,” said Martin Dagoberto, Policy Director of the Northeast Organic Farming Association, Mass. Chapter in a press release. “We still have a monumental endeavor ahead if we are to reduce toxins and rein in the toxic influence of the chemical lobby,” Mr. Dagoberto added. Advocates had been pushing the legislature to pass An Act to protect Massachusetts Pollinators, sponsored by pollinator champion Representative Carolyn Dykema, since 2014. Following several failures by state lawmakers to bring the bill over the finish line, efforts in 2019 resulted […]

Share

23
Feb

Hummingbirds Harmed by Pesticides Killing Off Bees, Butterflies, and Other Pollinators

(Beyond Pesticides, February 23, 2021) The same pesticides implicated in the worldwide decline of insect pollinators also present significant risks to their avian counterparts, hummingbirds. Well known for their nectar-fueled hovering flight powered by wings beating over 50 times per second, hummingbirds display unique reactions to toxic pesticides. Research by scientists at the University of Toronto finds that hummingbirds exposed to systemic neonicotinoid insecticides for even a short period of time can disrupt the high-powered metabolism of this important and charismatic animal. Scientists began their experiment by trapping 23 wild ruby-throated hummingbirds and housing them in an animal care facility. One group of birds acted as a control and received no pesticide exposure, while the rest were assigned either low, middle, or high exposure (1 part per million [ppm], 2ppm, and 2.5ppm, respectively) to the neonicotinoid imidacloprid. Scientists determined these amounts based upon probable nectar contamination in the real world. The pesticide was incorporated into the sugar solution provided to the birds over the course of three days. Within two hours of exposure to the pesticides, hummingbird metabolism dropped significantly. While the control group increased energy expenditure between 1% to 7%, the low exposed group displayed a 6% average decline, […]

Share

12
Feb

Eliminating Pesticides Increases Crop Yields, Debunking Myth of Pesticide Benefits

(Beyond Pesticides, February 12, 2021) Being many decades down the path of chemical-intensive agriculture, growers and other land managers (and all the industries that influence them) have come largely to ignore the efficacy of healthy, functioning natural systems to maintain ecological equilibrium, i.e., not letting any one pest or disease proliferate. Recent research points to an example of such ecosystem efficacy. The study, by researchers in California and China, sought to evaluate whether increased population densities of fungi might be suppressing nematode populations in California production fields frequently planted with the cole crops (such as brussels sprouts and broccoli) they favor. The research finds that a diverse population of fungi in soils is highly likely to be effectively killing nematodes that threaten such crops. This is not the first time Beyond Pesticides has covered the potential of fungi as an effective control for agricultural pests. Thirty years ago, these nematodes were dealt with by application of soil fumigants and nematicides, because at sufficient population levels, the nematodes can destroy cole crops. During the following three decades, state-mandated monitoring showed that use of those chemical controls was diminishing and, by 2014, had been eliminated — even as yields rose. The co-authors […]

Share