[X] CLOSEMAIN MENU

  • Archives

  • Categories

    • air pollution (8)
    • Announcements (600)
    • Antibiotic Resistance (39)
    • Antimicrobial (17)
    • Aquaculture (30)
    • Aquatic Organisms (33)
    • Bats (7)
    • Beneficials (51)
    • Biofuels (6)
    • Biological Control (34)
    • Biomonitoring (39)
    • Birds (25)
    • btomsfiolone (1)
    • Bug Bombs (2)
    • Canada (10)
    • Cannabis (29)
    • Centers for Disease Control and Prevention (CDC) (9)
    • Chemical Mixtures (3)
    • Children (110)
    • Children/Schools (240)
    • cicadas (1)
    • Climate (30)
    • Climate Change (84)
    • Clover (1)
    • compost (5)
    • Congress (17)
    • contamination (153)
    • deethylatrazine (1)
    • Disinfectants & Sanitizers (18)
    • Drift (13)
    • Drinking Water (15)
    • Ecosystem Services (12)
    • Emergency Exemption (3)
    • Environmental Justice (163)
    • Environmental Protection Agency (EPA) (506)
    • Events (88)
    • Farm Bill (18)
    • Farmworkers (193)
    • Forestry (5)
    • Fracking (4)
    • Fungal Resistance (6)
    • Fungicides (24)
    • Goats (2)
    • Golf (15)
    • Greenhouse (1)
    • Groundwater (14)
    • Health care (32)
    • Herbicides (36)
    • Holidays (37)
    • Household Use (9)
    • Indigenous People (6)
    • Indoor Air Quality (5)
    • Infectious Disease (4)
    • Integrated and Organic Pest Management (70)
    • Invasive Species (35)
    • Label Claims (49)
    • Lawns/Landscapes (248)
    • Litigation (340)
    • Livestock (9)
    • men’s health (1)
    • metabolic syndrome (3)
    • Metabolites (4)
    • Microbiata (21)
    • Microbiome (27)
    • molluscicide (1)
    • Nanosilver (2)
    • Nanotechnology (54)
    • National Politics (388)
    • Native Americans (3)
    • Occupational Health (15)
    • Oceans (9)
    • Office of Inspector General (2)
    • perennial crops (1)
    • Pesticide Drift (161)
    • Pesticide Efficacy (9)
    • Pesticide Mixtures (8)
    • Pesticide Regulation (774)
    • Pesticide Residues (181)
    • Pets (36)
    • Plant Incorporated Protectants (1)
    • Plastic (7)
    • Poisoning (19)
    • Preemption (41)
    • President-elect Transition (2)
    • Repellent (4)
    • Resistance (117)
    • Rights-of-Way (1)
    • Rodenticide (33)
    • Seasonal (3)
    • Seeds (6)
    • soil health (15)
    • Superfund (3)
    • synergistic effects (18)
    • Synthetic Pyrethroids (16)
    • Synthetic Turf (3)
    • Take Action (585)
    • Textile/Apparel/Fashion Industry (1)
    • Toxic Waste (11)
    • Volatile Organic Compounds (1)
    • Women’s Health (25)
    • Wood Preservatives (35)
    • World Health Organization (10)
    • Year in Review (2)
  • Most Viewed Posts

Daily News Blog

25
Mar

Data Supports Need to Transition Away from Plastics and Pesticides with Holistic Strategy

Save the Earth—With new data on the harm associated with plastics and related contamination, it becomes urgently necessary for all government agencies to participate in a comprehensive strategy to eliminate plastics and pesticides.

(Beyond Pesticides, March 25, 2024) Because of their widespread infiltration into the environment and the bodies of all organisms, including humans, plastics contamination requires a holistic strategy to protect life— with consideration given to practices and chemical use that reduce or eliminate harm. Pesticides and other toxic chemicals are adsorbed (adhered) to microplastics, resulting in bioaccumulation and widespread contamination. This adds to the complexity of the problem, which is largely ignored by federal regulatory agencies. While most environmental policies attempt to clean up or mitigate health threats, new data reinforces the need to stop the pipeline of hazardous chemicals, wherever possible.

With new data on the harm associated with plastics and related contamination, it becomes urgently necessary for all government agencies to participate in a comprehensive strategy to eliminate plastics and pesticides. Beyond Pesticides points to the evolving science on plastics contamination and their interaction with pesticides as yet another reason to transition to holistic land management systems that take on the challenge of eliminating hazardous chemical use. Organic land management policy creates the holistic systems framework through which plastics can be eliminated.

>> Tell USDA, EPA, and FDA to create strong restrictions on plastics in farming, water, and food.

The human and environmental health implications of plastic and related contamination are becoming increasingly well documented. Scientists are increasingly concerned about the impacts of microplastics—plastic fragments less than 5 mm in size—on a wide range of organisms. Microplastics can cause harmful effects to humans and other organisms through physical entanglement and physical impacts of ingestion. They also act as carriers of toxic chemicals that are adsorbed to their surface. Studies on fish have shown that microplastics and their associated toxic chemicals bioaccumulate, resulting in intestinal damage and changes in metabolism. Microplastics can increase the spread of antibiotic resistance genes in the environment.

Research continues to raise alarms about the hazards associated with the use of plastic, including the microplastic particles that are distributed in alarming amounts throughout the environment and taken up by organisms, including humans. A study published by researchers at Columbia and Rutgers universities in the January 2024 Proceedings of the National Academy of Sciences reports that the average liter of three brands of bottled water in the U.S. contains almost a quarter of a million bits of microplastics, of which 90 percent are at the nanoscale. The other ten percent are slightly larger, at microscale.

Researchers at Norway’s MicroLEACH project published a study that analyzes the components of 50 items in common use—plastic bags, disposable cups, dishwashing gloves, car tire granules, children’s toys and balloons. They found, as in previous studies, that many hazardous chemicals are in the plastics as well as many that could not be identified because they were not listed in the major chemical substance databases. Only 30 percent of the chemical compounds identified in the study were present in two or more products, suggesting that most plastics contain many unidentified chemicals, far beyond the known impurities, metabolites, and degradation products. Further, it suggests that in the environment plastics are chemically reactive and forming new compounds no one has anticipated and whose toxicity is unknown.

In the Columbia/Rutgers study, the researchers checked for seven types of plastic, but they were only able to identify about ten percent of the nanoparticles they found. Polyethylene terephthalate (PET) was a common ingredient, probably because many water bottles are made of it. However, they also found polyamide, polystyrene, polyvinyl chloride, and polymethyl methacrylate. (Tap water also contains microplastics in many places, although in much lower concentrations.) The team found that the number of individual chemical compounds varied wildly among products, ranging from 114 to 2,456, leading them to conclude that “assessing the toxicity of plastic chemicals present in a product based on testing individual target chemicals has limited value.†The Norwegian scientists also exposed cod eggs, embryos and larvae to water containing microplastics. The toxic effects they observed include spinal deformities reminiscent of scoliosis in humans.

In other new studies, out of a total of 257 patients who completed the study, polyethylene was detected in carotid artery plaque of 150 patients (58.4%), with a mean level of 2% of plaque; 31 patients (12.1%) also had measurable amounts of polyvinyl chloride, with a mean level of 0.5% of plaque. Microplastic particles been found in human lungs, blood, feces, and breast milk. They have even shown up in the brain as well as the placenta.

Highly hazardous PFAS (per- and polyfluoroalkyl substances) are leaching out of plastic containers and contaminating food products, according to research published in Environment Technology and Letters. The data confirm the results of prior research focused on the propensity of PFAS to contaminate various pesticide products through the storage containers.

>> Tell USDA, EPA, and FDA to create strong restrictions on plastics in farming, water, and food.

Letter to EPA:

Because of the adsorption of pesticides and other toxic chemicals to microplastics and resulting bioaccumulation, among other health threats, I am writing to ask EPA to develop drinking water standards and ambient water quality standards for microplastics. Plastics are everywhere, including the human body. As we learn about the risks associated with plastics, it becomes crucial for all government agencies to participate in a comprehensive strategy to eliminate them.

Scientists are increasingly concerned about the impacts of microplastics—plastic fragments less than 5 mm in size. Microplastics can cause harmful effects to humans and other organisms through physical entanglement and physical impacts of ingestion. They also act as carriers of toxic chemicals that are adsorbed to their surface. Studies on fish show that microplastics and their associated toxic chemicals bioaccumulate, resulting in intestinal damage and changes in metabolism. Microplastics can increase the spread of antibiotic resistance genes in the environment.

Researchers at Columbia and Rutgers universities in the January 2024 Proceedings of the National Academy of Sciences reports that the average liter of three brands of bottled water in the U.S. contains almost a quarter of a million bits of microplastics, of which 90 percent are at the nanoscale. The other ten percent are slightly larger, at microscale. Researchers checked for seven types of plastic but were only able to identify about ten percent of the nanoparticles they found. Polyethylene terephthalate (PET) was a common ingredient, probably because many water bottles are made of it. However, they also found polyamide, polystyrene, polyvinyl chloride, and polymethyl methacrylate. Tap water also contains microplastics in many places. The team found that the number of individual chemical compounds varied wildly among products, ranging from 114 to 2,456, leading them to conclude that “assessing the toxicity of plastic chemicals present in a product based on testing individual target chemicals has limited value.â€

Researchers at Norway’s MicroLEACH project analyzed the components of 50 items in common use—plastic bags, disposable cups, dishwashing gloves, car tire granules, children’s toys, and balloons, finding many hazardous chemicals in the plastics as well as many that could not be identified because they were not listed in the major chemical substance databases. Only 30 percent of the chemical compounds identified in the study were present in two or more products, suggesting that most plastics contain many unidentified chemicals, far beyond the known impurities, metabolites, and degradation products. Further, it suggests that in the environment plastics are chemically reactive and forming new compounds no one has anticipated and whose toxicity is unknown. They also exposed cod eggs, embryos, and larvae to water containing microplastics, observing toxic effects, including spinal deformities reminiscent of scoliosis in humans.

A study published in the New England Journal of Medicine found that out of a total of 257 patients completing the study, polyethylene was detected in carotid artery plaque of 150 patients (58.4%), with a mean level of 2% of plaque; 31 patients (12.1%) also had measurable amounts of polyvinyl chloride, with a mean level of 0.5% of plaque. Microplastic has also been found in human lungs, blood, feces, breast milk, the brain, and placenta.

Highly hazardous PFAS (per- and polyfluoroalkyl substances) leach out of plastic containers and contaminating food products, according to research published in Environment Technology and Letters. The data confirm the results of prior research focused on the propensity of PFAS to contaminate various pesticide products through the storage containers.

Please do your part to eliminate microplastics from our water supplies.

Thank you.

Letter to USDA:

Because of the adsorption of pesticides and other toxic chemicals to microplastics and resulting bioaccumulation, among other health threats, I am writing to ask USDA to discourage the use of plastic in agriculture. Plastics are everywhere, including the human body. As we learn about the risks associated with plastics, it becomes crucial for all government agencies to participate in a comprehensive strategy to eliminate them.

Scientists are increasingly concerned about the impacts of microplastics—plastic fragments less than 5 mm in size. They can cause harmful effects to humans and other organisms through physical entanglement and physical impacts of ingestion. They also act as carriers of toxic chemicals that are adsorbed to their surface. Studies on fish show that microplastics and their associated toxic chemicals bioaccumulate, resulting in intestinal damage and changes in metabolism. Microplastics can increase the spread of antibiotic resistance genes in the environment.

Soil organisms and edible plants have been shown to ingest microplastic particles. Earthworms can move microplastics through the soil, and microplastics can move through the food chain to human food. Microplastics can have a wide range of negative impacts on the soil, which are only beginning to be studied, but include reduction in growth and reproduction of soil microfauna.

Researchers at Norway’s MicroLEACH project analyzed the components of 50 items in common use—plastic bags, disposable cups, dishwashing gloves, car tire granules, children’s toys, and balloons, finding many hazardous chemicals in the plastics as well as many that could not be identified because they were not listed in the major chemical substance databases. Only 30 percent of the chemical compounds identified in the study were present in two or more products, suggesting that most plastics contain many unidentified chemicals, far beyond the known impurities, metabolites, and degradation products. Further, it suggests that in the environment plastics are chemically reactive and forming new compounds no one has anticipated and whose toxicity is unknown. The scientists also exposed cod eggs, embryos, and larvae to water containing microplastics, observing toxic effects, including spinal deformities reminiscent of scoliosis in humans.

A study published in the New England Journal of Medicine found that out of a total of 257 patients completing the study, polyethylene was detected in carotid artery plaque of 150 patients (58.4%), with a mean level of 2% of plaque; 31 patients (12.1%) also had measurable amounts of polyvinyl chloride, with a mean level of 0.5% of plaque. Microplastic has also been found in human lungs, blood, feces, breast milk, the brain, and placenta.

Highly hazardous PFAS (per- and polyfluoroalkyl substances) are leaching out of plastic containers and contaminating food products, according to research published in Environment Technology and Letters. The data confirm the results of prior research focused on the propensity of PFAS to contaminate various pesticide products through the storage containers.

Please do your part to eliminate microplastics from our food and environment by discouraging the use of plastic mulch and other plastics in agriculture.

Thank you.

Letter to FDA:

Because of the adsorption of pesticides and other toxic chemicals to microplastics and resulting bioaccumulation, among other health threats, I am writing to ask FDA to develop standards for food containers and food contact materials to eliminate movement of plastics and associated contaminants into food and bottled water. Plastics are everywhere, including the human body. As we learn about the risks associated with plastics, it becomes crucial for all government agencies to participate in a comprehensive strategy to eliminate them.

Scientists are increasingly concerned about the impacts of microplastics—plastic fragments less than 5 mm in size—which can cause harmful effects to humans and other organisms through physical entanglement and physical impacts of ingestion. They also act as carriers of toxic chemicals that are adsorbed to their surface. Studies on fish show that microplastics and their associated toxic chemicals bioaccumulate, resulting in intestinal damage and changes in metabolism. Microplastics can increase the spread of antibiotic resistance genes in the environment.

A study published by researchers at Columbia and Rutgers universities reports that the average liter of three brands of bottled water in the U.S. contains almost a quarter of a million bits of microplastics, of which 90 percent are at the nanoscale. The other ten percent are slightly larger, at microscale. Researchers were only able to identify about ten percent of the nanoparticles they found. Polyethylene terephthalate (PET) was a common ingredient, probably because many water bottles are made of it. However, they also found polyamide, polystyrene, polyvinyl chloride, and polymethyl methacrylate. Tap water also contains microplastics in many places, although in much lower concentrations. The team found that the number of individual chemical compounds varied wildly among products, ranging from 114 to 2,456, leading them to conclude that “assessing the toxicity of plastic chemicals present in a product based on testing individual target chemicals has limited value.â€

Researchers at Norway’s MicroLEACH project analyzed the components of 50 items in common use—plastic bags, disposable cups, dishwashing gloves, car tire granules, children’s toys, and balloons, finding many hazardous chemicals in the plastics as well as many that could not be identified because they were not listed in the major chemical substance databases. Only 30 percent of the chemical compounds identified in the study were present in two or more products, suggesting that most plastics contain many unidentified chemicals, far beyond the known impurities, metabolites, and degradation products. The scientists also exposed cod eggs, embryos, and larvae to water containing microplastics, observing toxic effects, including spinal deformities reminiscent of scoliosis in humans.

A study published in the New England Journal of Medicine found that out of a total of 257 patients completing the study, polyethylene was detected in carotid artery plaque of 150 patients (58.4%), with a mean level of 2% of plaque; 31 patients (12.1%) also had measurable amounts of polyvinyl chloride, with a mean level of 0.5% of plaque. Microplastic has also been found in human lungs, blood, feces, breast milk, the brain, and the placenta.

Highly hazardous PFAS (per- and polyfluoroalkyl substances) are leaching out of plastic containers and contaminating food products, according to research published in Environment Technology and Letters. The data confirm the results of prior research focused on the propensity of PFAS to contaminate various pesticide products through the storage containers.

Please do your part to eliminate microplastics from our food and water supplies.

Thank you.

Share

Leave a Reply

  • Archives

  • Categories

    • air pollution (8)
    • Announcements (600)
    • Antibiotic Resistance (39)
    • Antimicrobial (17)
    • Aquaculture (30)
    • Aquatic Organisms (33)
    • Bats (7)
    • Beneficials (51)
    • Biofuels (6)
    • Biological Control (34)
    • Biomonitoring (39)
    • Birds (25)
    • btomsfiolone (1)
    • Bug Bombs (2)
    • Canada (10)
    • Cannabis (29)
    • Centers for Disease Control and Prevention (CDC) (9)
    • Chemical Mixtures (3)
    • Children (110)
    • Children/Schools (240)
    • cicadas (1)
    • Climate (30)
    • Climate Change (84)
    • Clover (1)
    • compost (5)
    • Congress (17)
    • contamination (153)
    • deethylatrazine (1)
    • Disinfectants & Sanitizers (18)
    • Drift (13)
    • Drinking Water (15)
    • Ecosystem Services (12)
    • Emergency Exemption (3)
    • Environmental Justice (163)
    • Environmental Protection Agency (EPA) (506)
    • Events (88)
    • Farm Bill (18)
    • Farmworkers (193)
    • Forestry (5)
    • Fracking (4)
    • Fungal Resistance (6)
    • Fungicides (24)
    • Goats (2)
    • Golf (15)
    • Greenhouse (1)
    • Groundwater (14)
    • Health care (32)
    • Herbicides (36)
    • Holidays (37)
    • Household Use (9)
    • Indigenous People (6)
    • Indoor Air Quality (5)
    • Infectious Disease (4)
    • Integrated and Organic Pest Management (70)
    • Invasive Species (35)
    • Label Claims (49)
    • Lawns/Landscapes (248)
    • Litigation (340)
    • Livestock (9)
    • men’s health (1)
    • metabolic syndrome (3)
    • Metabolites (4)
    • Microbiata (21)
    • Microbiome (27)
    • molluscicide (1)
    • Nanosilver (2)
    • Nanotechnology (54)
    • National Politics (388)
    • Native Americans (3)
    • Occupational Health (15)
    • Oceans (9)
    • Office of Inspector General (2)
    • perennial crops (1)
    • Pesticide Drift (161)
    • Pesticide Efficacy (9)
    • Pesticide Mixtures (8)
    • Pesticide Regulation (774)
    • Pesticide Residues (181)
    • Pets (36)
    • Plant Incorporated Protectants (1)
    • Plastic (7)
    • Poisoning (19)
    • Preemption (41)
    • President-elect Transition (2)
    • Repellent (4)
    • Resistance (117)
    • Rights-of-Way (1)
    • Rodenticide (33)
    • Seasonal (3)
    • Seeds (6)
    • soil health (15)
    • Superfund (3)
    • synergistic effects (18)
    • Synthetic Pyrethroids (16)
    • Synthetic Turf (3)
    • Take Action (585)
    • Textile/Apparel/Fashion Industry (1)
    • Toxic Waste (11)
    • Volatile Organic Compounds (1)
    • Women’s Health (25)
    • Wood Preservatives (35)
    • World Health Organization (10)
    • Year in Review (2)
  • Most Viewed Posts